Assignment II: MTH 213, Fall 2017

Ayman Badawi

QUESTION 1. (i) Let X be number of broken eggs. Given : a) X is an divisible by 3 , b) $X \equiv 9$ ($\bmod 10$), and $X \equiv 6(\bmod 13)$.
a. Find X if $390 \leq X \leq 780$ [Note that X is divisible by 3 means $X \equiv 0(\bmod 3)$
b. Find X if $1560 \leq X \leq 1950$
(ii) Convert $(26)_{7}$ to base 2
(iii) Convert $(67012)_{8}$ to base 2
(iv) Convert (117) $)_{16}$ to base 8
(v) Convert 93 to base 5

QUESTION 2 (HARD: I will discuss it on Thursday, it will not be on Quiz, note that this question is similar to question 1,3 of Exam II Spring 2012). Solve over $Z: x \equiv 7(\bmod 8), 3 x \equiv 1(\bmod 4)$, and $x \equiv 35(\bmod 36)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

1- (i) Given:
$a-X$ is divisible by 3
$b-x \equiv 9(\bmod 10)$ and

$$
x \equiv 6(\bmod
$$

a - Find x if $390 \leqslant x \leqslant 780$
b - Find x if $1560 \leqslant x \leqslant 1950$
CRT:

$\operatorname{gcd}\left(m_{1}, m_{2} m_{3}\right)=1$

$$
x<m_{1} m_{2} m_{3} \Rightarrow x<390
$$

$\Rightarrow Q_{1}=\frac{m}{m_{1}}=\frac{390}{10}=39$
$y_{1}=\left(Q_{1} \bmod 10\right)^{-1}=(39 \bmod 10)^{-1}$

$$
=(9)^{-1}
$$

$9 \times \sqrt{y_{1}} \sqrt{\bmod } 10=1$

$$
\therefore y_{1}=q
$$

$Q_{2}=\frac{m}{m_{2}}=\frac{390}{13}=30$
$y_{2}=\left(Q_{2} \bmod 13\right)^{-1}=(30 \bmod 13)^{-}$

$$
=(4)^{-1}
$$

$4 \times\left[\underline{\left.y_{2}\right]} \bmod B=1\right.$

$$
\therefore y_{2}=10
$$

$$
X=\left(r_{1} y_{1} Q_{1}+r_{2} y_{2} Q_{2}+r_{2} y_{3} Q_{3}\right)^{0} \bmod 890
$$

$$
\begin{aligned}
x & =(9 \times 9 \times 39+6 \times 30 \times 10) \bmod 390 \\
& =(3159+1800) \bmod 390 \\
& =4959 \bmod 390 \\
& =279 \bmod 390 \\
& \frac{12}{390} \frac{4959}{2780} \\
& \text { all int. } \Rightarrow 279+390 \mathrm{n}
\end{aligned}
$$

$$
a-\quad 279+390(1)
$$

$$
x=669
$$

ChK $\rightarrow 390 \leqslant \frac{669}{\sqrt{y}} \leqslant 780$

$$
b-\quad 279+390(4)
$$

$$
x=1839
$$

$$
\text { Chk } \rightarrow 1560 \leqslant \frac{1839}{\nabla} \leqslant 1950
$$

(ii) $(26)_{7}$ to base 2
cons. to base 10:

$$
2 \times 7^{1}+6 \times 7^{0}=14+6=20
$$

$(20)_{10}$ to base 2

$$
=(10100)_{2}
$$

(iii) $(67012)_{8}$ to base $2 \quad 2^{3}=8$
$\left(\begin{array}{llll}110 & 111 & 000 & 001 \\ 010\end{array}\right)$
(iv) $(117)_{16}$ to base 8
conn. to base 2
$\Rightarrow \underbrace{0001 \quad 0001 \quad 0111}$
cons. to base 8 "combine 3 digits

$$
=(427)_{8}
$$

(v) 93 to base 5

Div 5	$\operatorname{Mod} 5$
$93 \operatorname{div} 5=18$	$93 \bmod 5=3$
$18 \operatorname{div} 5=3$	$18 \bmod 5=3$
$3 \operatorname{div} 5=0 \rightarrow$ stop.	$3 \bmod 5=3$

